Senin, 08 November 2010

In astronomy

When light from a star or another astronomical object enters the Earth's atmosphere, atmospheric turbulence (introduced, for example, by different temperature layers and different wind speeds interacting) can distort and move the image in various ways[2] (see astronomical seeing for a full discussion). Images produced by any telescope larger than a few metres are blurred by these distortions. For example, an 8-10 m telescope (like the VLT or Keck) can produce AO-corrected images with a angular resolution of 30-60 milliarcsecond (mas) resolution at infrared wavelengths, while the

An adaptive optics system tries to correct these distortions, using a wavefront sensor which takes some of the astronomical light, a deformable mirror that lies in the optical path, and a computer that receives input from the detector. The wavefront sensor measures the distortions the atmosphere has introduced on the timescale of a few milliseconds; the computer calculates the optimal mirror shape to correct the distortions and the surface of the deformable mirror is reshaped accordingly.

In order to perform adaptive optics correction, the shape of the incoming wavefronts must be measured as a function of position in the telescope aperture plane. Typically the circular telescope aperture is split up into an array of pixels in a wavefront sensor, either using an array of small lenslets (a Shack-Hartmann sensor), or using a curvature or pyramid sensor which operates on images of the telescope aperture. The mean wavefront perturbation in each pixel is calculated. This pixelated map of the wavefronts is fed into the deformable mirror and used to correct the wavefront errors introduced by the atmosphere. It is not necessary for the shape or size of the astronomical object to be known – even Solar System objects which are not point-like can be used in a Shack-Hartmann wavefront sensor, and time-varying structure on the surface of the Sun is commonly used for adaptive optics at solar telescopes. The deformable mirror corrects incoming light so that the images appear sharp. Because a science target is often too faint to be used as a reference star for measuring the shape of the optical wavefronts, a nearby brighter guide star can be used instead. The light from the science target has passed through approximately the same atmospherc turbulence as the reference star's light and so its image is also corrected, although generally to a lower accuracy.


source : http://en.wikipedia.org/wiki/Adaptive_optics


visits : play free online games, online flash games, social games

Tidak ada komentar:

Posting Komentar